First LiDAR wind buoys in China

Thursday, 20 July, 2017 - 10:45
The Fraunhofer IWES LiDAR buoy will measure wind conditions in Chinese waters for the first time. (Photo: Fraunhofer IWES)
The Fraunhofer IWES LiDAR buoy will measure wind conditions in Chinese waters for the first time. (Photo: Fraunhofer IWES)

Chinese system integrator Titan Technologies Corporation has ordered two Fraunhofer IWES LiDAR measuring buoys for the surveying of the Zhangpu and Changle offshore wind farms planned for off the coast of China's Fujian province.

This will be the first time a floating LiDAR system will be used for offshore wind measurements in China. The buoys will be used to precisely measure the wind conditions in the designated locations so as to allow precise calculation of the wind farm’s electricity yield. The projected wind farms are owned by the China Three Gorges Corporation (CTG).

Many business hubs are located close to the coast in China: This, coupled with the state’s expansion targets, is stimulating the constant growth of the offshore wind energy sector in China. CTG received the contract to build two wind farms with a capacity of 2,8 GW altogether and wants to obtain precise measurements of the conditions on-site. For an area of 600 MW in later deployment, the Fraunhofer IWES LiDAR buoy technology will be used. Titan Technologies Corporation has been engaged by CTG to perform the measurements. The company will also be completing the installation work, servicing, and data evaluation.

“We have been working with Fraunhofer for years and appreciate their proven, highly deployable solutions for complex operational conditions. Paving the way for CTG’s vision of reliable offshore wind energy for China is an exciting and honorable assignment to which we contribute years of wind energy experience”, said John Feng, Chairman of Titan Technologies Corporation.

By providing comprehensive feedback on the buoy’s performance under the specific operation conditions found in China, Titan contributes to Fraunhofer’s sound understanding of the requirements of varying environmental loads, e.g. typhoons. Furthermore, as an IWES partner, Titan provides Chinese companies information on technological solutions, services and possible application.

“We welcome the order from Titan Technologies Corp. and believe that CTG’s decision to use two Fraunhofer IWES LiDAR buoys could set an example in China”, said Bernhard Lange, Head of Wind Farm Planning and Operation at Fraunhofer IWES.

The Fraunhofer IWES LiDAR buoy has already been used multiple times for offshore measuring; most recently off the Scottish coast for the projected Firth of Forth wind farm. It measures wind speed up to 200 m above the surface of the water.

Fraunhofer IWES / Silke Funke

Similar Entries

Nezzy² in Hymendorf (pict. EnBW/Jan Oelker)

Two wind turbines on a precast concrete floating platform: that, basically, is Nezzy2. This 18 metre tall, 1:10-scale prototype is being tested by EnBW and aerodyn engineering, a north German engineering company, in a flooded gravel pit near Bremerhaven. Next, this summer, Nezzy2 is to prove itself in wind and wave conditions in the Baltic Sea.

HUSUM Wind 2021 Offshore Wind & Green Hydrogen (pict. Messe Husum & Congress GmbH & Co. KG)

The special topic of this year's HUSUM Wind from 14-17 September 2021 will be wind hydrogen, the currently most important trend topic in the wind economy and industry. A dynamically growing hydrogen economy is developing in Europe and the UK; wind energy, and especially offshore wind, is the central driver for this.

High-end technologies essential for research (pict. Alfred-Wegener-Institut_Michael Gutsche (CC-BY 4.0)_Polarstern MOSAiC Expedition)

Sustainable use of the oceans is one of the focal topics at SMM Digital. At the Offshore Dialogue online conference on 2 February, international experts will discuss current trends in the offshore wind farms segment, technical challenges facing tidal and wave energy conversion, and innovative ocean monitoring technologies.

Liebherr TCC 78000 heavy-duty crane loads 72 monopiles for the largest Danish offshore wind farm "Kriegers Flak" (pict. Liebherr)

Liebherr heavy-duty crane TCC 78000 loads 72 monopiles for the largest Danish offshore wind farm "Kriegers Flak.